ใบงานที่ 6 การควบคุม Servo Motor (SG90) ด้วย Arduino UNO R
ใบงานที่ 6 การควบคุม Servo Motor (SG90)
ผู้จัดทำ
กฤษณะ รักธรรม 001
สราวุธ ชอบเพื่อน 021
หลักการทำงาน
Servo เป็นคำศัพท์ที่ใช้กันทั่วไปในระบบควบคุมอัตโนมัติ มาจากภาษาละตินคำว่า Sevus หมายถึง “ทาส” (Slave) ในเชิงความหมายของ Servo Motor ก็คือ Motor ที่เราสามารถสั่งงานหรือตั้งค่า แล้วตัว Motor จะหมุนไปยังตำแหน่งองศาที่เราสั่งได้เองอย่างถูกต้อง โดยใช้การควบคุมแบบป้อนกลับ (Feedback Control) ในบทความนี้จะกล่าวถึง RC Servo Motor ซึ่งนิยมนำมาใช้ในเครื่องเล่นที่บังคับด้วยคลื่นวิทยุ (RC = Radio - Controlled) เช่น เรือบังคับวิทยุ รถบังคับวิทยุ เฮลิคอปเตอร์บังคับวิทยุ เป็นต้น
Feedback Control คือ ระบบควบคุมที่มีการวัดค่าเอาต์พุตของระบบนำมาเปรียบเทียบกับค่าอินพุตเพื่อควบคุมและปรับแต่งให้ค่าเอาต์พุตของระบบให้มีค่า เท่ากับ หรือ ใกล้เคียงกับค่าอินพุต
ส่วนประกอบภายนอก RC Servo Motor
ส่วนประกอบภายนอก RC Servo Motor
- Case ตัวถัง หรือ กรอบของตัว Servo Motor
- Mounting Tab ส่วนจับยึดตัว Servo กับชิ้นงาน
- Output Shaft เพลาส่งกำลัง
- Servo Horns ส่วนเชื่อมต่อกับ Output shaft เพื่อสร้างกลไกล
- Cable สายเชื่อมต่อเพื่อ จ่ายไฟฟ้า และ ควบคุม Servo Motor จะประกอบด้วยสายไฟ 3 เส้น และ ใน RC Servo Motor จะมีสีของสายแตกต่างกันไปดังนี้
o สายสีแดง คือ ไฟเลี้ยง (4.8-6V)
o สายสีดำ หรือ น้ำตาล คือ กราวด์
o สายสีเหลือง (ส้ม ขาว หรือฟ้า) คือ สายส่งสัญญาณพัลซ์ควบคุม (3-5V)
- Connector จุดเชื่อมต่อสายไฟ
- Output Shaft เพลาส่งกำลัง
- Servo Horns ส่วนเชื่อมต่อกับ Output shaft เพื่อสร้างกลไกล
- Cable สายเชื่อมต่อเพื่อ จ่ายไฟฟ้า และ ควบคุม Servo Motor จะประกอบด้วยสายไฟ 3 เส้น และ ใน RC Servo Motor จะมีสีของสายแตกต่างกันไปดังนี้
o สายสีแดง คือ ไฟเลี้ยง (4.8-6V)
o สายสีดำ หรือ น้ำตาล คือ กราวด์
o สายสีเหลือง (ส้ม ขาว หรือฟ้า) คือ สายส่งสัญญาณพัลซ์ควบคุม (3-5V)
- Connector จุดเชื่อมต่อสายไฟ
ส่วนประกอบภายใน RC Servo Motor
Ref: www.pololu.com
1. Motor เป็นส่วนของตัวมอเตอร์
2. Gear Train หรือ Gearbox เป็นชุดเกียร์ทดแรง
3. Position Sensor เป็นเซ็นเซอร์ตรวจจับตำแหน่งเพื่อหาค่าองศาในการหมุน
4. Electronic Control System เป็นส่วนที่ควบคุมและประมวลผล
2. Gear Train หรือ Gearbox เป็นชุดเกียร์ทดแรง
3. Position Sensor เป็นเซ็นเซอร์ตรวจจับตำแหน่งเพื่อหาค่าองศาในการหมุน
4. Electronic Control System เป็นส่วนที่ควบคุมและประมวลผล
Servo Motor Block Diagram
หลักการทำงานของ RC Servo Motor
เมื่อจ่ายสัญญาณพัลซ์เข้ามายัง RC Servo Motor ส่วนวงจรควบคุม (Electronic Control System) ภายใน Servo จะทำการอ่านและประมวลผลค่าความกว้างของสัญญาณพัลซ์ที่ส่งเข้ามาเพื่อแปลค่าเป็นตำแหน่งองศาที่ต้องการให้ Motor หมุนเคลื่อนที่ไปยังตำแหน่งนั้น แล้วส่งคำสั่งไปทำการควบคุมให้ Motor หมุนไปยังตำแหน่งที่ต้องการ โดยมี Position Sensor เป็นตัวเซ็นเซอร์คอยวัดค่ามุมที่ Motor กำลังหมุน เป็น Feedback กลับมาให้วงจรควบคุมเปรียบเทียบกับค่าอินพุตเพื่อควบคุมให้ได้ตำแหน่งที่ต้องการอย่างถูกต้องแม่นยำ
สัญญาณ RC ในรูปแบบ PWM
ตัว RC Servo Motor ออกแบบมาใช้สำหรับรับคำสั่งจาก Remote Control ที่ใช้ควบคุมของเล่นด้วยสัญญาณวิทยุต่างๆ เช่น เครื่องบินบังคับ รถบังบังคับ เรือบังคับ เป็นต้น ซึ่ง Remote จำพวกนี้ที่ภาครับจะแปลงความถี่วิทยุออกมาในรูปแบบสัญญาณ PWM (Pulse Width Modulation)
เมื่อจ่ายสัญญาณพัลซ์เข้ามายัง RC Servo Motor ส่วนวงจรควบคุม (Electronic Control System) ภายใน Servo จะทำการอ่านและประมวลผลค่าความกว้างของสัญญาณพัลซ์ที่ส่งเข้ามาเพื่อแปลค่าเป็นตำแหน่งองศาที่ต้องการให้ Motor หมุนเคลื่อนที่ไปยังตำแหน่งนั้น แล้วส่งคำสั่งไปทำการควบคุมให้ Motor หมุนไปยังตำแหน่งที่ต้องการ โดยมี Position Sensor เป็นตัวเซ็นเซอร์คอยวัดค่ามุมที่ Motor กำลังหมุน เป็น Feedback กลับมาให้วงจรควบคุมเปรียบเทียบกับค่าอินพุตเพื่อควบคุมให้ได้ตำแหน่งที่ต้องการอย่างถูกต้องแม่นยำ
สัญญาณ RC ในรูปแบบ PWM
ตัว RC Servo Motor ออกแบบมาใช้สำหรับรับคำสั่งจาก Remote Control ที่ใช้ควบคุมของเล่นด้วยสัญญาณวิทยุต่างๆ เช่น เครื่องบินบังคับ รถบังบังคับ เรือบังคับ เป็นต้น ซึ่ง Remote จำพวกนี้ที่ภาครับจะแปลงความถี่วิทยุออกมาในรูปแบบสัญญาณ PWM (Pulse Width Modulation)
มุมหรือองศาจะขึ้นอยู่กับความกว้างของสัญญาณพัลซ์ ซึ่งโดยส่วนมากความกว้างของพัลซ์ที่ใช้ใน RC Servo Motor จะอยู่ในช่วง 1-2 ms หรือ 0.5-2.5 ms
ยกตัวอย่างเช่นหากกำหนดความกว้างของสัญญาณพัลซ์ไว้ที่ 1 ms ตัว Servo Motor จะหมุนไปทางด้ายซ้ายจนสุด ในทางกลับกันหากกำหนดความกว้างของสัญญาณพัลซ์ไว้ที่ 2 ms ตัว Servo Motor จะหมุนไปยังตำแหน่งขวาสุด แต่หากกำหนดความกว้างของสัญญาณพัลซ์ไว้ที่ 1.5 ms ตัว Servo Motor ก็จะหมุนมาอยู่ที่ตำแหน่งตรงกลางพอดี
ดังนั้นสามารถกำหนดองศาการหมุนของ RC Servo Motor ได้โดยการเทียบค่า เช่น RC Servo Motor สามารถหมุนได้ 180 องศา โดยที่ 0 องศาใช้ความกว้างพัลซ์เท่ากับ 1000 us ที่ 180 องศาความกว้างพัลซ์เท่ากับ 2000 us เพราะฉะนั้นค่าที่เปลี่ยนไป 1 องศาจะใช้ความกว้างพัลซ์ต่างกัน (2000-1000)/180 เท่ากับ 5.55 us
จากการหาค่าความกว้างพัลซ์ที่มุม 1 องศาข้างต้น หากต้องกำหนดให้ RC Servo Motor หมุนไปที่มุม 45 องศาจะหาค่าพัลซ์ที่ต้องการได้จาก 5.55 x 45 เท่ากับ 249.75 us แต่ที่มุม 0 องศาเราเริ่มที่ความกว้างพัลซ์ 1ms หรือ 1000 us เพราะฉะนั้นความกว้างพัลซ์ที่ใช้กำหนดให้ RC Servo Motor หมุนไปที่ 45 องศา คือ 1000 + 249.75 เท่ากับประมาณ 1250 us
จากการหาค่าความกว้างพัลซ์ที่มุม 1 องศาข้างต้น หากต้องกำหนดให้ RC Servo Motor หมุนไปที่มุม 45 องศาจะหาค่าพัลซ์ที่ต้องการได้จาก 5.55 x 45 เท่ากับ 249.75 us แต่ที่มุม 0 องศาเราเริ่มที่ความกว้างพัลซ์ 1ms หรือ 1000 us เพราะฉะนั้นความกว้างพัลซ์ที่ใช้กำหนดให้ RC Servo Motor หมุนไปที่ 45 องศา คือ 1000 + 249.75 เท่ากับประมาณ 1250 us
ขอบคุณขอมูลดีๆจาก : http://www.thaieasyelec.com/article-wiki/review-product-article
รูป
คำนวณเป็นสัญญาณพัลส์ที่มีความกว้างสัมพันธ์กับระยะทางที่วัดได้
วีดีโอ
- Servo หมุน จาก 0 องศา - 180 องศา
โค็ด
#include <Servo.h>
Servo servo;
int angle = 10;
void setup() {
servo.attach(8);
servo.write(angle);
}
void loop()
{
// scan from 0 to 180 degrees
for(angle = 0; angle < 180; angle++)
{
servo.write(angle);
delay(15);
}
// now scan back from 180 to 0 degrees
for(angle = 180; angle < 0; angle--)
{
servo.write(angle);
delay(15);
}
}
วีดีโอ
- Servo หมุน จาก 45 องศา - 135 องศา
#include <Servo.h>
Servo servo;
int angle = 10;
void setup() {
servo.attach(8);
servo.write(angle);
}
void loop()
{
// scan from 0 to 180 degrees
for(angle = 0; angle < 180; angle++)
{
servo.write(angle);
delay(15);
}
// now scan back from 180 to 0 degrees
for(angle = 180; angle < 0; angle--)
{
servo.write(angle);
delay(15);
}
}
วีดีโอ
- Servo หมุน จาก 90 องศา - 180 องศา
#include <Servo.h>
Servo servo;
int angle = 90;
void setup() {
servo.attach(8);
servo.write(angle);
}
void loop()
{
// scan from 90 to 180 degrees
for(angle = 90; angle < 180; angle++)
{
servo.write(angle);
delay(15);
}
// now scan back from 180 to 90 degrees
for(angle = 180; angle > 90; angle--)
{
servo.write(angle);
delay(15);
}
ความคิดเห็น
แสดงความคิดเห็น